Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
researchsquare; 2023.
Preprint in English | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-2870695.v1

ABSTRACT

Tissue-resident immunity underlies essential host defenses against pathogens, but analysis in humans has lacked in vitro model systems where epithelial infection and accompanying resident immune cell responses can be observed en bloc. Indeed, human primary epithelial organoid cultures typically omit immune cells, and human tissue resident-memory lymphocytes are conventionally assayed without an epithelial infection component, for instance from peripheral blood, or after extraction from organs. Further, the study of resident immunity in animals can be complicated by interchange between tissue and peripheral immune compartments. To study human tissue-resident infectious immune responses in isolation from secondary lymphoid organs, we generated adult human lung three-dimensional air-liquid interface (ALI) lung organoids from intact tissue fragments that co-preserve epithelial and stromal architecture alongside endogenous lung-resident immune subsets. These included CD69+CD103+ tissue-resident and CCR7- and/or CD45RA- TRM, B, NK and myeloid cells, with conservation of T cell receptor repertoires, all corresponding to matched fresh tissue. SARS-CoV-2 vigorously infected organoid lung epithelium, alongside secondary induction of innate cytokine production that was inhibited by antiviral agents. Notably, SARS-CoV-2-infected organoids manifested adaptive virus-specific T cell activation that was specific for seropositive and/or previously infected donor individuals. This holistic non-reconstitutive organoid system demonstrates the sufficiency of lung to autonomously mount adaptive T cell memory responses without a peripheral lymphoid component, and represents an enabling method for the study of human tissue-resident immunity.


Subject(s)
Lymphoma , Severe Acute Respiratory Syndrome , COVID-19 , Neoplasms, Glandular and Epithelial
2.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.12.23.473930

ABSTRACT

Previous reports show that Ly49+CD8+ T cells can suppress autoimmunity in mouse models of autoimmune diseases. Here we find a markedly increased frequency of CD8+ T cells expressing inhibitory Killer cell Immunoglobulin like Receptors (KIR), the human equivalent of the Ly49 family, in the blood and inflamed tissues of various autoimmune diseases. Moreover, KIR+CD8+ T cells can efficiently eliminate pathogenic gliadin-specific CD4+ T cells from Celiac disease (CeD) patients' leukocytes in vitro. Furthermore, we observe elevated levels of KIR+CD8+ T cells, but not CD4+ regulatory T cells, in COVID-19 and influenza-infected patients, and this correlates with disease severity and vasculitis in COVID-19. Expanded KIR+CD8+ T cells from these different diseases display shared phenotypes and similar T cell receptor sequences. These results characterize a regulatory CD8+ T cell subset in humans, broadly active in both autoimmune and infectious diseases, which we hypothesize functions to control self-reactive or otherwise pathogenic T cells.


Subject(s)
Autoimmune Diseases , Vasculitis , Communicable Diseases , Celiac Disease , COVID-19 , Influenza, Human
3.
ssrn; 2021.
Preprint in English | PREPRINT-SSRN | ID: ppzbmed-10.2139.ssrn.3962570

ABSTRACT

Pension funds in some economies are used as a captive audience to channel capital at belowmarket rates to government. This policy is only one tool in the financial repression toolkit, butit is receiving increased attention as governments around the world struggle to increase fiscalspace and reduce their sovereign debt burden as they rebuild their economies after the pandemic.First, this paper provides an analysis of financial repression using pension funds from a historicalperspective. It then assesses the welfare and distributional implications of this policy and distillslessons learned from a variety of advanced and emerging economies. The wide range of possibleinterventions and idiosyncratic country conditions make a general set of policy recommendationselusive, but the paper suggests four high-level principles that can help policymakers assess thecosts and benefits of implementing policies that employ pension funds as a captive audience forfinancial repression.


Subject(s)
Muscular Diseases
4.
researchsquare; 2021.
Preprint in English | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-936346.v1

ABSTRACT

Fully effective vaccines for viruses such as Influenza and SARS-CoV-2 must elicit a diverse repertoire of antibodies against multiple drifted virus strains. However, how to achieve a diverse response has no general solution except to combine multiple strains, which risks diluting the response for all strains included. Here, we describe the synthesis of a universal, toll-like receptor 7 agonist (TLR7)-nanoparticle adjuvant, TLR7-NP, constructed from TLR7 agonist-initiated ring-opening polymerization of lactide and self-assembly with poly(ethylene glycol)- b -poly(lactic-co-glycolic acid). When mixed with Alum-adsorbed antigens, this TLR7-NP adjuvant elicited cross-reactive antibodies for both dominant and subdominant epitopes, as well as antigen-specific CD8 + T cell responses. TLR7-NPs adjuvanted influenza subunit vaccine successfully protected mice from heterologous viral challenge. TLR7-NPs also enhanced the antibody response to a SARS-CoV-2 subunit vaccine against multiple variants and revealed the mobilization of a virus-like response. We further demonstrate enhanced antigen-specific responses in human tonsil organoids with this novel adjuvant.

5.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.06.15.21258703

ABSTRACT

The determinants of severe COVID-19 in non-elderly adults are poorly understood, which limits opportunities for early intervention and treatment. Here we present novel machine learning frameworks for identifying common and rare disease-associated genetic variation, which outperform conventional approaches. By integrating single-cell multiomics profiling of human lungs to link genetic signals to cell-type-specific functions, we have discovered and validated over 1,000 risk genes underlying severe COVID-19 across 19 cell types. Identified risk genes are overexpressed in healthy lungs but relatively downregulated in severely diseased lungs. Genetic risk for severe COVID-19, within both common and rare variants, is particularly enriched in natural killer (NK) cells, which places these immune cells upstream in the pathogenesis of severe disease. Mendelian randomization indicates that failed NKG2D-mediated activation of NK cells leads to critical illness. Network analysis further links multiple pathways associated with NK cell activation, including type-I-interferon-mediated signalling, to severe COVID-19. Our rare variant model, PULSE, enables sensitive prediction of severe disease in non-elderly patients based on whole-exome sequencing; individualized predictions are accurate independent of age and sex, and are consistent across multiple populations and cohorts. Risk stratification based on exome sequencing has the potential to facilitate post-exposure prophylaxis in at-risk individuals, potentially based around augmentation of NK cell function. Overall, our study characterizes a comprehensive genetic landscape of COVID-19 severity and provides novel insights into the molecular mechanisms of severe disease, leading to new therapeutic targets and sensitive detection of at-risk individuals.


Subject(s)
COVID-19 , von Willebrand Disease, Type 3
6.
ssrn; 2020.
Preprint in English | PREPRINT-SSRN | ID: ppzbmed-10.2139.ssrn.3659389

ABSTRACT

Host immune responses play central roles in controlling SARS-CoV2 infection, yet remain incompletely characterized and understood. Here, we present a comprehensive immune response map spanning 454 proteins and 847 metabolites in plasma integrated with single-cell multi-omic assays of 221,748 PBMCs in which whole transcriptome, 192 surface proteins, and T and B cell receptor sequence were analyzed within the context of clinical measures from 50 COVID19 patient samples. Our study reveals novel cellular subpopulations, such as proliferative exhausted CD8+ and CD4+ T cells, and cytotoxic CD4+ T cells, that may be features of severe COVID-19 infection. We condensed over 1 million immune features into a single immune response axis that independently aligns with many clinical features and is also strongly associated with disease severity. Our study represents an important resource towards understanding the heterogeneous immune responses of COVID-19 patients and may provide key information for informing therapeutic development.


Subject(s)
COVID-19
7.
medrxiv; 2020.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2020.06.07.20124636

ABSTRACT

We report dynamics of seroconversion to SARS-CoV-2 infections detected by IgG ELISA in 177 individuals diagnosed by RT-PCR. Longitudinal analysis identifies 2-8.5% of individuals who do not seroconvert even weeks after infection. They are younger than seroconverters who have increased co-morbidity and higher inflammatory markers such as C-Reactive Protein. Higher antibody responses are associated with non-white ethnicity. Antibody responses do not decline during follow up almost to 2 months. Serological assays increase understanding of disease severity. Their application in regular surveillance will clarify the duration and protective nature of humoral responses to SARS-CoV-2.


Subject(s)
COVID-19 , Severe Acute Respiratory Syndrome
SELECTION OF CITATIONS
SEARCH DETAIL